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Abstract

Let X be a real strictly convex and Kadec Banach space and G a nonempty closed relatively

boundedly weakly compact subset of X : Let BðX Þ (resp. KðXÞ) be the family of nonempty
bounded closed (resp. compact) subsets of X endowed with the Hausdorff distance and let

BGðXÞ denote the closure of the set fAABðX Þ : A-G ¼ |g and KGðX Þ ¼ BGðX Þ-KðXÞ:
We introduce the admissible family A of BðX Þ and prove that Eo

AðGÞ (resp. EA
o ðGÞ), the set

of all subsets FAADBGðX Þ (resp. FAADBðX Þ) such that the minimization problem

minðF ;GÞ (resp. the maximization problem maxðF ;GÞ) is well-posed, is a dense Gd-subset of

A: Furthermore, when X is uniformly convex, we prove that A\Eo
AðGÞ and A\EA

o ðGÞ are
s-porous in A:
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1. Introduction

Let X be a real Banach space. We denote by BðXÞ the family of nonempty closed
bounded subsets of X andKðX Þ the family of nonempty compact subsets of X : For
a closed subset G of X and AABðXÞ; we set

lAG :¼ inffjjz � xjj : xAA; zAGg

and if G is bounded,

mAG :¼ supfjjz � xjj : xAA; zAGg:

Given a nonempty closed (resp. closed bounded) subset G of X ; following [5], we say
that a pair ðx0; z0Þ with x0AA and z0AG is a solution of the minimization (resp.
maximization) problem, denoted by minðA;GÞ (resp. maxðA;GÞ), if jjx0 � z0jj ¼ lAG

(resp. jjx0 � z0jj ¼ mAG). Moreover, any sequence fðxn; znÞg; where xnAA and znAG

for all n; such that limn-Njjxn � znjj ¼ lAG (resp. limn-Njjxn � znjj ¼ mAG) is called
a minimizing (resp. maximizing) sequence. A minimization (resp. maximization)
problem is said to be well-posed if it has a unique solution and every minimizing
(resp. maximizing) sequence converges strongly to the solution.
Recall that the Hausdorff distance on BðXÞ is defined by

HðA;BÞ ¼ max sup
aAA

inf
bAB

jja � bjj; sup
bAB

inf
aAA

jja � bjj
� �

; A;BABðX Þ:

It is well known that ðBðX Þ;HÞ is a complete metric space.
De Blasi et al. [5] considered the well-posedness of the minimization and

maximization problems and set up the generic results for bounded convex closed
subsets in a uniformly convex Banach space. Recently, the first author [12] of the
present paper established the same results for compact subsets in reflexive locally
uniformly convex Banach spaces.
It is the objective of the present paper to further investigate the well-posedness of

the mutually nearest and mutually furthest point problems. More precisely, we first
introduce the admissible familyA of BðXÞ and then establish the generic results on
the well-posedness for the admissible family in a strongly convex Banach space.
Furthermore, when X is uniformly convex, we prove that the collection of all subsets
in the admissible family such that the minimization (respectively, maximization)
problems fail to be well-posed is s-porous in the admissible family. Applying the
results to the admissible families BðXÞ and KðXÞ; we immediately extend some
recent results due to De Blasi et al. [5] and Li [12].
It should be noted that the problems considered here are also in spirit of Steckin

[17] and some further research in this direction can be found in [1,2,6,8–11,13,14] and
in the monograph [7]. Some other generic results in spaces of convex sets can be
found in [3,5,12,15]. The results of the present paper generalize and sharpen some
results from [4,5,12], etc.
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2. Preliminaries

In a metric space ðE; dÞ; we denote by BEðx; rÞ and UEðx; rÞ the closed and open
ball with center x and radius r; respectively. If X is a Banach space and ACX ; we

denote by %A and diam A the closure and diameter of A; respectively. And we simply
write Bðx; rÞ and Uðx; rÞ for BX ðx; rÞ and UX ðx; rÞ; respectively.
Let GCX ; FABðXÞ and xAX : We use the notations

dðx;GÞ :¼ inffjjx � gjj : gAGg;

LGðF ; sÞ :¼ fgAG : dðg;FÞplFG þ sg;

where s40; and if G is bounded,

eðx;GÞ :¼ supfjjx � gjj : gAGg;

MGðF ; sÞ :¼ fgAG : eðg;FÞXmFG � sg:

It is readily seen that LGðF ; sÞ and MGðF ; sÞ are nonempty closed and satisfy the
property: LGðF ; sÞDLGðF ; s0Þ and MGðF ; sÞDMGðF ; s0Þ if sos0: The next two
propositions are straightforward.

Proposition 2.1. Let GCX be a closed subset of X, FABðX Þ and xAX : Then

lFGpdðx;FÞ þ dðx;GÞ;

and, if G is bounded,

mFGXeðx;FÞ � dðx;GÞ:

Proposition 2.2. Let GCX be a closed subset of X and FABðX Þ: If X is uniformly

convex, then

(i) the problem minðF ;GÞ is well-posed if and only if

inf
s40

diam LGðF ; sÞ ¼ 0 and inf
s40

diam LF ðG; sÞ ¼ 0;

(ii) if G is, in addition, bounded, the problem maxðF ;GÞ is well-posed if and only if

inf
s40

diamMGðF ; sÞ ¼ 0 and inf
s40

diamMF ðG; sÞ ¼ 0:

The following proposition is useful.

Proposition 2.3. Assume that X is a uniformly convex Banach and r0 is a positive real

number. Then, for any e40; there exists dðeÞ40 such that, when 0odpdðeÞ;

diamDðx; y; r; dÞoe
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holds for all 0orpr0; x; yAX satisfying 0ojjx � yjjpr=2; where

Dðx; y; r; dÞ ¼ fzAX : jjz � yjjpr � jjx � yjjð1� dÞ and jjz � xjjXrg:

Proof. Suppose on the contrary that for some e40 and 8d40; there exist

xd; ydAX ; 0ordpr0 satisfying 0ojjxd � ydjjprd

2 such that

diamDðxd; yd; rd; dÞ42e: ð2:1Þ

With no loss of generality, we may assume xd ¼ 0: Write

ad :¼
jjydjj

rd
; yd

0 :¼
1

ad
yd:

It is easily seen that yd
0ADð0; yd; rd; dÞ and jjyd

0 � ydjj ¼ ð1� adÞrd: We have by (2.1)
some zdADð0; yd; rd; dÞ such that jjzd � yd

0jj4e: Hence

jjzdjjXrd and jjzd � ydjjprd � jjydjjð1� dÞ:

From this it is easy to see that

jjadðyd � yd
0Þ þ ð1� adÞðyd � zdÞjj ¼ jjð1� adÞzdjjXð1� adÞrd ð2:2Þ

and

ð1� adÞrdp jjzdjj � jjydjj

p jjzd � ydjj

p rd � jjydjjð1� dÞ

¼ ð1� adð1� dÞÞrd:

By (2.2), we have x�
dAX �; jjx�

djj ¼ 1 such that

/x�
d; adðyd � yd

0Þ þ ð1� adÞðyd � zdÞSXð1� adÞrd:

It follows that

/x�
d; adðyd � yd

0ÞSX ð1� adÞrd � ð1� adÞjjyd � zdjj

X ð1� adÞrd½1� ð1� adð1� dÞÞ


¼ adð1� adÞð1� dÞrd:

Hence

/x�
d; yd � yd

0SXð1� adÞrdð1� dÞ:

Similarly, we also have

/x�
d; yd � zdSXð1� adÞrd:

The above two inequalities imply that

jjðyd � yd
0Þ þ ðyd � zdÞjjXrdð1� adÞð2� dÞ;
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which in turn implies that

lim inf
d-0þ

yd � yd
0

rdð1� adÞ
þ yd � zd

rdð1� adÞ

����
����

����
����X2:

Note that

yd � yd
0

rdð1� adÞ

����
����

����
���� ¼ 1

and

lim sup
d-0þ

yd � zd

rdð1� adÞ

����
����

����
����p lim sup

d-0þ

ð1� adð1� dÞÞ
1� ad

¼ 1

as rdð1� adÞpr0=2: Using the uniform convexity of X ; we get

lim
d-0þ

jjyd
0 � zdjj ¼ 0:

This contradicts the assumption that jjzd � yd
0jj4e and the proof is complete. &

Next we introduce the notion of an admissible family of BðX Þ:

Definition 2.4. A closed subsetA of BðXÞ is called an admissible family if, whenever
AAA and xAX ; we have A,fxgAA:

Clearly, the most common admissible families are BðXÞ and KðXÞ: Of course,
one can construct some other admissible families. For example, let S be a subset of
BðXÞ: The admissible family spanned by S; denoted spanAS; is given by

spanAS ¼ fB,fx1;y; xng: BAS; nX1; xiAX ; i ¼ 1;y; ng:
In the rest of this paper, G will be a fixed nonempty closed subset of X : Hence we
write, for convenience, lF :¼ lFG and mF :¼ mFG (provided G is also bounded).

3. Existence

Definition 3.1. A Banach space X is said to be (sequentially) Kadec if, for each
sequence fxngCX which converges weakly to x with limn-Njjxnjj ¼ jjxjj; we have
limn-Njjxn � xjj ¼ 0:

Definition 3.2. A Banach space X is said to be strongly convex if it is reflexive, Kadec
and strictly convex.

The following results from [6,16] play a key role in the following.

Proposition 3.1. Suppose that X is a strictly convex and Kadec Banach space. Let G be

a nonempty closed, relatively boundedly weakly compact (resp. bounded relatively

weakly compact) subset of X. Then the set of all points xAX such that the minimization
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problem minðx;GÞ (resp. maximization problem maxðx;GÞ) is well-posed is a dense

Gd-subset of X \G (resp. X).

3.1. The minimization problem

Let N ¼ f1; 2;?g and kAN : We use the notations:

� BGðXÞ :¼ fAABðX Þ : lA40g; where the closure is taken in the metric space
ðBðXÞ;HÞ:

� Lk :¼ fFABGðXÞ : infs40 diam LGðF ; sÞo1
k
and infs40 diam LF ðG; sÞo1

k
g:

� Eo
AðGÞ :¼ fFAA : the minimization problem minðF ;GÞ is well-posedg:

In particular, we write EoðGÞ for Eo
AðGÞ when A ¼ BGðXÞ: Repeating the proof of

Lemma 3.2 of [5], we have

Lemma 3.1. Let kAN : Then Lk is open in BGðXÞ:

Now we are ready to state the first main result of this section.

Theorem 3.1. Suppose that X is a strictly convex and Kadec Banach space. Let G be a

nonempty closed, relatively boundedly weakly compact subset of X and ADBGðXÞ an

admissible family of BðXÞ: Then Eo
AðGÞ is a dense Gd-subset of A:

Proof. By Proposition 2.2 and Lemma 3.1, we see that

Eo
AðGÞ ¼

\
kAN

ðA-LkÞ

is a Gd-subset of A: Thus to complete the proof it suffices to show that Eo
AðGÞ is

dense in A: Towards this end, we take an arbitrary FAA and with no loss of

generality, we may assume lF40: For any 0oro4
5
lF ; take %xAF such that

dð %x;GÞolF þ r=4: By Proposition 3.1, we have an x̃AX such that jj %x � x̃jjor=4 and
the minimization problem minðx̃;GÞ is well-posed; hence there is g̃AG such that
jjx̃ � g̃jj ¼ dðx̃;GÞ: Set

u :¼ 1� r

jjx̃ � g̃jj

� �
x̃ þ r

jjx̃ � g̃jj g̃

and

Y ¼ F,fug:

Then we have that jju � x̃jj ¼ r: Since

jjx̃ � g̃jj ¼ dðx̃;GÞXdð %x;GÞ � jjx̃ � %xjjXlF

� jjx̃ � %xjj4lF � r
4
4r ¼ jjx̃ � ujj; ð3:1Þ
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the minimization problem minðu;GÞ is also well-posed and g̃ is the unique best
approximation to u from G: We estimate

HðF ;YÞ ¼ dðu;FÞpjju � %xjjpjju � x̃jj þ jjx̃ � %xjjp
5r

4
:

We next show that YAEo
AðGÞ: Indeed, by (3.1), we obtain

jju � g̃jj ¼ jjx̃ � g̃jj � jjx̃ � ujj

p jjx̃ � %xjj þ dð %x;GÞ � r

o r=4þ lF þ r=4� r

¼ lF � r=2:

It follows that

lYpjju � g̃jjolF � r=2:

Let now fðyn; gnÞg; with ynAY and gnAG; be a minimizing sequence (i.e.
limnjjyn � gnjj ¼ lY ). Then,

lim sup
n

dðyn;GÞp lim
n

jjyn � gnjj ¼ lYolF � r=2:

This implies that there exists some positive integer N1 such that yneF and hence
yn ¼ u for all nXN1: Then we have

lim
n

jjgn � ujj ¼ lYpdðu;GÞ:

This shows that fgng is a minimizing sequence for minðu;GÞ: Now since minðu;GÞ is
well-posed, it follows that ðgnÞ converges strongly to g̃: It is clear that ðu; g̃Þ is the
unique solution of the problem minðY ;GÞ: So minðY ;GÞ is well-posed; that is,
YAEo

AðGÞ: &

From Theorem 3.1 we immediately have the following corollaries.

Corollary 3.1. Suppose that X is a strictly convex and Kadec Banach space. Let G be a

nonempty closed, relatively boundedly weakly compact subset of X. Then EoðGÞ is a

dense Gd-subset of BGðX Þ:

Corollary 3.2. Suppose that X is a strictly convex and Kadec Banach space. Let G be a

nonempty closed, relatively boundedly weakly compact subset of X. Then

EoðGÞ-KðX Þ is a dense Gd-subset of KGðX Þ:

Corollary 3.3. Suppose that X is a strongly convex Banach space and G is a nonempty

closed subset of X. Let ADBGðX Þ be an admissible family of BðXÞ: Then Eo
AðGÞ is a

dense Gd-subset of A:
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3.2. The maximization problem

Let N ¼ f1; 2;?g and kAN : We use the notations:

� Mk :¼ fFABðXÞ : infs40 diamMGðF ; sÞo1
k
and infs40 diamMF ðG; sÞo1

k
g:

� EA
o ðGÞ :¼ fFAA : the maximization problem maxðF ;GÞ is well-posedg:

In particular, we write EoðGÞ for EA
o ðGÞ when A ¼ BðXÞ: Repeating the proof of

Lemma 3.2 of [5], we have

Lemma 3.2. Let kAN: Then Mk is open in BðXÞ:

The second main result can be stated as follows.

Theorem 3.2. Suppose that X is a strictly convex and Kadec Banach space. Let G be a

nonempty closed, relatively weakly compact, and bounded subset of X and A be an

admissible family of BðXÞ: Then EA
o ðGÞ is a dense Gd-subset of A:

Proof. Let FAA be arbitrary. Obviously we may assume that mF40: For any
0oromF ; take %xAF such that eð %x;GÞ4mF � r=4: By Proposition 3.1, there exists
x̃AX such that jj %x � x̃jjor=4 and the maximization problem maxðx̃;GÞ is well-
posed. Let g̃AG with jjx̃ � g̃jj ¼ eðx̃;GÞ and set

u :¼ 1þ r

jjx̃ � g̃jj

� �
x̃ � r

jjx̃ � g̃jj g̃

and

Y :¼ F,fug:

Then we have jju � x̃jj ¼ r: Furthermore, the maximization problem maxðu;GÞ is
also well-posed and g̃ is the unique furthest point to u from G: We estimate

HðF ;YÞ ¼ dðu;FÞpjju � %xjjpjju � x̃jj þ jjx̃ � %xjjp5r=4:

We next show that YAMk: Since

jju � g̃jj ¼ r þ jjx̃ � g̃jj

X r � jjx̃ � %xjj þ eð %x;GÞ

4 r � r=4þ mF � r=4

¼ mF þ r=2;

it follows that

mYXjju � g̃jj4mF þ r=2:

Let fðyn; gnÞg with ynAY and gnAG be a maximizing sequence. Then,

lim inf
n

eðyn;GÞX lim
n

jjyn � gnjj ¼ mY4mF þ r=2:
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This implies that there exists some positive integer N1 such that yneF and so yn ¼ u

for all nXN1: Hence,

lim
n

jjgn � ujj ¼ lYXeðu;GÞ

and fgng is a minimizing sequence for maxðu;GÞ: But the problem maxðu;GÞ is
well-posed, we conclude that ðgnÞ strongly converges to g̃: It is evident that ðu; g̃Þ is
the unique solution of the problem maxðY ;GÞ and so maxðY ;GÞ is well-posed. That
is, YAEA

o ðGÞ: The proof is complete. &

The following three corollaries are now direct consequences of Theorem 3.2.

Corollary 3.4. Suppose that X is a strictly convex and Kadec Banach space. Let G be a

nonempty closed, relatively weakly compact, and bounded subset of X. Then EoðGÞ is a

dense Gd-subset of BGðX Þ:

Corollary 3.5. Suppose that X is a strictly convex and Kadec Banach space. Let G be a

nonempty closed, relatively weakly compact, and bounded subset of X. Then

EoðGÞ-KðX Þ is a dense Gd-subset of KðX Þ:

Corollary 3.6. Suppose that X is a strongly convex Banach space and G is a nonempty

closed bounded subset of X. Let A be an admissible family of BðXÞ: Then EA
o ðGÞ is a

dense Gd-subset of A:

4. Porosity

The following definition is taken from De Blasi et al. [4].

Definition 4.1. A subset Y in a metric space ðE; dÞ is said to be porous in E if there
are 0otp1 and r040 such that for every xAE and rAð0; r0
 there is a point yAE

such that Bdðy; trÞDBdðx; rÞ-ðE\Y Þ: A subset Y is said to be s-porous in E if it is a
countable union of sets which are porous in E:

Note that in this definition the statement ‘‘for every xAE’’ can be replaced by ‘‘for
every xAY ’’. Clearly, a set which is s-porous in E is also meager in E; the converse
is, in general, false.

4.1. Minimization problems

For FAEoðGÞ; let ð fF ; gF Þ denote the unique solution to the problem minðF ;GÞ:
Set

Fa :¼ F,fð1� aÞfF þ agFg; 0pap1:
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Lemma 4.1. Let N ¼ f1; 2;yg be the set of positive integers. Define a set *B in BGðXÞ
by

*B ¼
\

kAN

[
FAEoðGÞ

[
0pap1=2

BBGðXÞðFa; rFa
ð1=kÞÞ;

where rFa
ðeÞ ¼ minfHðF ;FaÞ; 1ge: If X is uniformly convex, then *BDEoðGÞ:

Proof. It suffices to show that for every FA *B;

lim
d-0þ

diam LGðF ; dÞ ¼ 0 and lim
d-0þ

diam LF ðG; dÞ ¼ 0:

Indeed, as FA *B; for each kAN ; there exist F kAEoðGÞ and 0pakp1=2 such that

HðF ;Fk
ak
ÞprF k

ak

ð1=kÞ:

This implies that HðF ;F k
ak
Þ-0 as k-þN: It follows that

r0 :¼ sup
kAN

diam Fk
ak
oþN:

We write for convenience,

dk :¼ rFk
ak

ð1=kÞ; uk :¼ ð1� akÞfFk þ akgFk ; rk :¼ lFk :

Then it is not hard to see that

lFk
ak
¼ ð1� akÞrk;

dðuk;FkÞ ¼ jj fFk � ukjj ¼ akrk;

dk ¼ minfHðF k;F k
ak
Þ; 1g=kpakrk=k:

We may also assume, with no loss of generality, that ak40 for all k:

Claim I. diam LF ðG; dkÞp4dk for all k44:

To prove Claim I we first show

LFk
ak
ðG; 4dkÞ ¼ fukg 8k44:

To see this, we assume fALFk
ak
ðG; 4dkÞ and k44: Since

dð f ;GÞpð1� akÞrk þ 4dkprk � ð1� 4=kÞakrkolFk ;

we obtain that feFk and hence f ¼ uk for F k
ak

¼ Fk,fukg:
Now for any fALF ðG; dkÞ; since HðF ;F k

ak
Þpdk; there exists %fAFk

ak
such that

jj f � %fjjp2dk: We have

dð %f;GÞpjj f � %fjj þ dð f ;GÞplF þ 3dkplFk
ak
þ 4dk;
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using the fact that jlF � lFk
ak
jpdk: It follows that %fALFk

ak
ðG; 4dkÞ and so %f ¼ uk when

k44: Thus, for any f1; f2ALF ðG; dkÞ; we have that
jj f1 � f2jjpjj f1 � ukjj þ jjuk � f2jjp4dk 8k44;

This proves the claim.

Claim II. LGðF ; dkÞDDð fFk ; uk; rk; 4=kÞ for all k44:

To prove Claim II we first show

LGðFk
ak
; 3dkÞDDð fFk ; uk; rk; 4=kÞ 8k44:

In fact, for any gALGðF k
ak
; 3dkÞ; we have that

dðg;Fk
ak
ÞplFk

ak
þ 3dk ¼ ð1� akÞrk þ 3dk:

Take f kAFk
ak
such that

jjg � f kjjpð1� akÞrk þ 4dk:

Hence for k44;

dð f k;GÞpjjg � f kjjpð1� akÞrk þ 4dkprk � ð1� 4=kÞakrkolFk :

This implies that f k ¼ uk and

jjg � ukjjp ð1� akÞrk þ 4dk

p ð1� akÞrk þ 4=kakrk

¼ rk � jj fFk � ukjjð1� 4=kÞ:

It follows that

LGðFk
ak
; 3dkÞDDð fFk ; uk; rk; 4=kÞ:

On the other hand, since

LGðF ; dkÞDLGðF k
ak
; 3dkÞ;

we have

LGðF ; dkÞDDð fFk ; uk; rk; 4=kÞ 8k44:

This ends the proof of Claim II.
Combining Claims I, II and Proposition 2.3, we have

lim
k-þN

diam LGðF ; dkÞ ¼ 0

and

lim
k-þN

diam LF ðG; dkÞ ¼ 0:

Hence by Proposition 2.2 FAEoðGÞ and the proof is complete. &
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Theorem 4.1. Let X be a uniformly convex Banach space and ADBGðXÞ be an

admissible family of BðXÞ: Then the set A\EoðGÞ is s-porous in A:

Proof. Let

Bk ¼ A\

[
FAEoðGÞ

[
0pap1=2

BAðFa; rFa
ð1=kÞÞ;

Bkl ¼ fFABk : 1=lolFolg:

By Lemma 4.1, we have

A\EoðGÞDA\ *B ¼
[

kAN

[
lAN

Bkl :

To complete the proof it suffices to show that the set Bkl is porous in A for every
k; lAN :
Let k; lAN be arbitrary. Define r0 ¼ 1=ð2lÞ and a ¼ 1=ð4kÞ: By Theorem 3.1, for

any FABkl and 0orpr0; there exists %FAEo
AðGÞ such that

HðF ; %FÞor

4
and

1

l
ol %Fol:

Set %u1=2 ¼ ð f %F þ g %FÞ=2: Then
Hð %F1=2;FÞXHð %F1=2; %FÞ � Hð %F;FÞ

X sup
fA %F1=2

dð f ; %FÞ � r=4

X dð %u1=2; %FÞ � r=4

¼ð1=2Þl %F � r=4X3r=4:

It follows that there exists 0otp1=2 such that Hð %Ft;FÞ ¼ 3r=4: Since for each

AABAð %Ft; arÞ
HðA;FÞpHðA; %FtÞ þ Hð %Ft;FÞpar þ 3r=4pr;

we have that

BAð %Ft; arÞDBAðF ; rÞ:

In order to show that

BAð %Ft; arÞDA\Bkl ;

it suffices to show that

BAð %Ft; arÞDBAð %Ft; r %Ft
ð1=kÞÞ:

Indeed, from the definition of a; it follows that arp1=k: Furthermore, since

Hð %Ft; %FÞXHð %Ft;FÞ � HðF ; %FÞXr=2;

we have

arp2aHð %Ft; %FÞpHð %Ft; %FÞ=k;
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so that

arpr %Ft
ð1=kÞ:

This completes the proof. &

Corollary 4.1. Let X be a uniformly convex Banach space. Then the set BGðX Þ\EoðGÞ
is s-porous in BGðX Þ:

Corollary 4.2. Let X be a uniformly convex Banach space. Then the set KGðX Þ\EoðGÞ
is s-porous in KGðXÞ:

4.2. Maximization problems

Given FAEoðGÞ; let ð fF ; gF Þ be the unique solution to the problem maxðF ;GÞ: Set
Fa :¼ F,fð1þ aÞfF � agFg; 0pap1:

We also set

*B :¼
\

kAN

[
FAEoðGÞ

[
0pap1=2

BBðFa; rað1=kÞÞ:

Lemma 4.2. If X a is uniformly convex Banach space, then *BDEoðGÞ:

Proof. It suffices to show that, for every FA *B;

lim
d-0þ

diamMGðF ; dÞ ¼ 0 and lim
d-0þ

diamMF ðG; dÞ ¼ 0:

Let FA *B be arbitrary. Then for each kAN there exist FkABo and 0pakp1
2
such that

HðF ;Fk
ak
Þprak

ð1=kÞ:

So

r0 :¼ sup
kAN

diam Fk
ak
oþN:

As in the proof of Lemma 4.1, we write

dk :¼ rak
ð1=kÞ; uk :¼ ð1þ akÞfFk � akgFk ; rk :¼ mFk

and assume that ak40 for all k: Then we have

dkpakrk=k; mFk
ak

¼ ð1þ akÞrk

and

dðuk;FkÞ ¼ jj fFk � ukjj ¼ akrk:

Let %rk :¼ rk þ akrkð1� 4=kÞ: We will prove that
MGðF ; dkÞDMGðFk

ak
; 3dkÞDDðuk; fFk ; %rk; 4=kÞ 8k44 ð4:1Þ
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and

MFk
ak
ðG; 4dkÞ ¼ fukg 8k44: ð4:2Þ

Firstly, for any gAMGðF k
ak
; 3dkÞ; we have that

eðg;F k
ak
ÞXmFk

ak

� 3dk ¼ ð1þ akÞrk � 3dk:

Take f kAFk
ak
such that

jjg � f kjjXð1þ akÞrk � 4dk

so that for k44;

eð f k;GÞXjjg � f kjjXð1þ akÞrk � 4dk4rk þ ð1� 4=kÞakrk4mFk :

This implies that f k ¼ uk: Hence we have that

jjg � ukjjX ð1þ akÞrk � 4dk

X ð1þ akÞrk þ 4akrk=r

¼ %rk:

Clearly, jjg � fFk jjprk ¼ %rk � jjuk � fFk jjð1� 4=kÞ: This shows that
MGðF k

ak
; 3dkÞDDðuk; fF k ; %rk; 4=kÞ

since gAMGðFk
ak
; 3dkÞ is arbitrary. Noting that, for HðF ;Fk

ak
Þpdk;

MGðF ; dkÞDMGðFk
ak
; 3dkÞ;

we have

MGðF ; dkÞDDðuk; fFk ; %rk; 4=kÞ;

hence (4.1) holds. Secondly, for any fAMF k
ak
ðG; 4dkÞ; we have

eð f ;GÞXmFk
ak

� 4dk ¼ ð1þ akÞrk � 4dkXrk þ ð1� 4=kÞakrk4rk:

This implies that feF k so that (4.2) holds. Next we will show that FAEoðGÞ:
Indeed, for any fAMF ðG; dkÞ; since HðF ;F k

ak
Þpdk; there exists %fAFk

ak
such that

jj f � %fjjp2dk: Thus, we have that

eð %f;GÞXeð f ;GÞ � jj f � %fjjXmF � 3dkXmFk
ak

� 4dk;

which implies %fAMF k
ak
ðG; 4dkÞ; which, by (4.2), in turn implies that %f ¼ uk: Hence, for

any two elements f1; f2AMF ðG; dkÞ;
jj f1 � f2jjpjj f1 � ukjj þ jjuk � f2jjp4dk:

Therefore,

diamMF ðG; dkÞp4dk
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and

lim
k-þN

diamMF ðG; dkÞ ¼ 0:

By Proposition 2.4 and (4.1), we conclude that

lim
k-þN

diamMGðF ; dkÞ ¼ 0:

This together with Proposition 2.2 indicates that FAEoðGÞ and the proof is
complete. &

Theorem 4.2. Let X be a uniformly convex Banach space and A an admissible family

of BðXÞ: Then the set A\EoðGÞ is s-porous in A:

Proof. Let

Bk :¼ A\

[
FAEoðGÞ

[
0pap1=2

BAðFa; rFa
ð1=kÞÞ;

Bkl :¼ fFABk : 1=lomFolg:
Then, by Lemma 4.1, we have

A\EoðGÞDA\ *B ¼
[

kAN

[
lAN

Bkl :

By arguments similar to those used in the proof of Theorem 4.1, we can show that
the set Bkl is porous in A for every k; lAN ; and the proof is thus complete. &

Corollary 4.3. Let X be a uniformly convex Banach space. Then the set BðX Þ\EoðGÞ is

s-porous in BðX Þ:

Corollary 4.4. Let X be a uniformly convex Banach space. Then the set KðXÞ\EoðGÞ
is s-porous in KðXÞ:

5. Conclusions

We have established some results on generic property and porosity of well-
posedness of mutually nearest and mutually furthest points for any admissible family
of bounded subsets in Banach space. In particular, for a nonempty closed subset G of
X ; we obtained the following two results: one is this: if X is strongly convex, then
EoðGÞ and EoðGÞ-KðGÞ (resp. EoðGÞ and EoðGÞ-KðGÞ) are dense Gd-sets
in BGðXÞ and KGðX Þ (resp. BðXÞ and KðXÞ), respectively; the other shows
that BGðXÞ\EoðGÞ and KGðXÞ\EoðGÞ (resp. BðXÞ\EoðGÞ and KðXÞ\EoðGÞ) are
s-porous in BGðXÞ andKGðXÞ (resp. BðX Þ andKðX Þ), respectively, provided that
X is uniformly convex. Recall that the first result was showed to be true forKC

GðXÞ
(resp. KCðX Þ) by Li [12] but for BC

GðXÞ (resp. BCðX Þ) by De Blasi et al. [5] under
the stronger assumption that X is uniformly convex. Here BCðXÞ stands for the
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subset of BðXÞ consisting of all convex subsets of X and BC
GðXÞ; KCðXÞ; KC

GðXÞ
are defined similarly. However, the s-porosity of the minimization problem
minðA;GÞ (resp. maximization problem maxðA;GÞ) has not been explored for

AAKC
GðX Þ (resp. AAKCðX Þ) or AABC

GðXÞ (resp. AABCðXÞ) before. Thus, we are
motivated to consider the following two problems.

Problem 5.1. Is the set EoðGÞ-BC
GðXÞ (resp. EoðGÞ-BCðX Þ) a dense Gd-sets in

BC
GðX Þ (resp. BCðX Þ) if X is just a strongly convex Banach space?

Problem 5.2. Are the setsBC
GðXÞ\EoðGÞ andKC

GðXÞ\EoðGÞ (resp.BCðXÞ\EoðGÞ and
KCðX Þ\EoðGÞ) are s-porous in BC

GðXÞ and KC
GðX Þ (resp. BCðXÞ and KCðXÞ),

respectively, if X is uniformly convex?

Surprisingly, the techniques developed in this paper or other papers such as [5,12]
do not work for the above two problems and hence we leave them open.
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