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Abstract

Let X be a real strictly convex and Kadec Banach space and G a nonempty closed relatively
boundedly weakly compact subset of X. Let Z(X) (resp. #(X)) be the family of nonempty
bounded closed (resp. compact) subsets of X endowed with the Hausdorff distance and let
A6(X) denote the closure of the set {4e#(X) : AnG =0} and X 6(X) = B6(X) A (X).
We introduce the admissible family .« of #(X) and prove that E%,(G) (resp. E (G)), the set
of all subsets Fe.o/ c%Bg(X) (resp. Feo/ =%(X)) such that the minimization problem
min(F, G) (resp. the maximization problem max(F, G)) is well-posed, is a dense Gs-subset of
/. Furthermore, when X is uniformly convex, we prove that «/\E°,(G) and .«/\E(G) are
g-porous in .o7.
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1. Introduction

Let X be a real Banach space. We denote by #(X) the family of nonempty closed
bounded subsets of X and #(X) the family of nonempty compact subsets of X. For
a closed subset G of X and A€ %(X), we set

Jac =inf{||z — x|| : xe 4,ze G}
and if G is bounded,
Uag = sup{||z — x|| : xe 4,ze G}.

Given a nonempty closed (resp. closed bounded) subset G of X, following [5], we say
that a pair (xg,z9) with xoe 4 and zoe G is a solution of the minimization (resp.
maximization) problem, denoted by min(A4, G) (resp. max(4, G)), if ||xo — zo|| = duc
(resp. ||xo — zo|| = 14g)- Moreover, any sequence {(x,,z,)}, where x,€4 and z,e G
for all n, such that lim,_, - ||x, — za|| = Aac (resp. limy,_, o ||xn — zn|| = pyg) is called
a minimizing (resp. maximizing) sequence. A minimization (resp. maximization)
problem is said to be well-posed if it has a unique solution and every minimizing
(resp. maximizing) sequence converges strongly to the solution.
Recall that the Hausdorff distance on #(X) is defined by

H(A,B) max{sup inf ||la — b||, sup inf||a—b||}, A,BeB(X).
acA beB beB 4€Ad

It is well known that (#(X), H) is a complete metric space.

De Blasi et al. [5] considered the well-posedness of the minimization and
maximization problems and set up the generic results for bounded convex closed
subsets in a uniformly convex Banach space. Recently, the first author [12] of the
present paper established the same results for compact subsets in reflexive locally
uniformly convex Banach spaces.

It is the objective of the present paper to further investigate the well-posedness of
the mutually nearest and mutually furthest point problems. More precisely, we first
introduce the admissible family .o/ of #(X) and then establish the generic results on
the well-posedness for the admissible family in a strongly convex Banach space.
Furthermore, when X is uniformly convex, we prove that the collection of all subsets
in the admissible family such that the minimization (respectively, maximization)
problems fail to be well-posed is o-porous in the admissible family. Applying the
results to the admissible families (X ) and #'(X), we immediately extend some
recent results due to De Blasi et al. [5] and Li [12].

It should be noted that the problems considered here are also in spirit of Steckin
[17] and some further research in this direction can be found in [1,2,6,8—11,13,14] and
in the monograph [7]. Some other generic results in spaces of convex sets can be
found in [3,5,12,15]. The results of the present paper generalize and sharpen some
results from [4,5,12], etc.
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2. Preliminaries

In a metric space (E,d), we denote by Bg(x,r) and Ug(x,r) the closed and open
ball with center x and radius r, respectively. If X is a Banach space and 4= X, we
denote by 4 and diam A the closure and diameter of 4, respectively. And we simply
write B(x,r) and U(x,r) for By(x,r) and Uy(x,r), respectively.

Let Ge X, Fe#(X) and xe X. We use the notations

d(x, G) = inf{||x — ¢g|| : g€ G},
Lg(F,0) ={9eG: d(g,F)<Apg+a},

where ¢>0, and if G is bounded,

e(x, G) = sup{[[x — g|| : g€ G},

MG(F7J) = {gEG: e(g7F)>:uFG _J}'

It is readily seen that Lg(F,0) and Mg(F,o) are nonempty closed and satisfy the
property: Lg(F,0)=Lg(F,d’) and Mg(F,0)=Mg(F,d’) if o<o’. The next two
propositions are straightforward.

Proposition 2.1. Let G< X be a closed subset of X, Fe#(X) and xe X. Then
lre<d(x,F)+d(x,G),

and, if G is bounded,
Urg=e(x, F) —d(x,G).

Proposition 2.2. Let G X be a closed subset of X and Fe (X). If X is uniformly
convex, then

(1) the problem min(F, G) is well-posed if and only if

inf diam Lg(F,0) =0 and inf diam Lg(G,0) = 0;
a>0 a>0

(ii) if G is, in addition, bounded, the problem max(F, G) is well-posed if and only if
in% diam Mg(F,0) =0 and in% diam Mr(G,0) = 0.
ag> g>
The following proposition is useful.

Proposition 2.3. Assume that X is a uniformly convex Banach and ry is a positive real
number. Then, for any ¢>0, there exists 5(¢)>0 such that, when 0<0<0(g),

diam D(x, y,r,d)<e
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holds for all 0<r<ry, x,yeX satisfying 0<||x — y||<r/2, where

D(x,y,r,0) ={zeX : [z =yll<r =[x =yl[(1 =8) and ||z —x[[>r}.

Proof. Suppose on the contrary that for some &¢>0 and Vd>0, there exist
X%, 3 e X,0<r’ <ry satisfying 0<||x® — »||<% such that

diam D(x%,y°,1°,6) > 2e. (2.1)
With no loss of generality, we may assume x° = 0. Write

[ P
o5 = 5 yo::oc_(;y'

It is easily seen that y3e D(0,)°,1°,5) and ||y — »°|| = (1 — a5)r°. We have by (2.1)
some z°e D(0,)°,7°, ) such that ||z° — y9||>e. Hence

12°[|=r" and [[2° = y°[[<rs — [D°II(1 = 0).

From this it is easy to see that

[l (5" = ¥5) + (1 = 2) (0 = 2°)|| = [|(1 = 05)2°| [ > (1 — t)r° (2.2)
and
(1= o)< (121 = |°)]
<12 =)

<’ =1 - 3)
= (1 —as(1 —0))r.
By (2.2), we have xjeX*, ||x}|| = 1 such that
(X050 = y0) + (1= a5) (0 = 2°) > = (1 — a5)r”.
It follows that
(g, as(0” = 15) > = (1 —a)rs — (1 — ) |p° — 2°]
= (1 —os)rs[l = (1 —as(1 = 9))]
=as(1 — os)(1 — 8)r°.
Hence
(x50 =10y = (1 — o)’ (1 = 9).
Similarly, we also have
<x:§,yé -2 =(1- oc(s)ré.
The above two inequalities imply that
107 =50) + (07 = 2)[Zr5(1 = 2)(2 = 9),
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which in turn implies that

d _ 1,0 o _ 0
liminf|| 2 —20 4 Y 72 |5o
30+ }’5(1 — 06(3) V,;(l — 06(5)
Note that
¥ =¥ |
r5(1 —065)
and
o _ g0 1 —o5(l =90
lim sup : ’é lim sup w =1
50+ ||Fs(1 —a5) 50+ 1 —as

as rs(1 — as) <rg/2. Using the uniform convexity of X, we get

lim [[y) —z°|| = 0.

Jm Ly — =]

This contradicts the assumption that ||z° — 9||>¢ and the proof is complete. [
Next we introduce the notion of an admissible family of Z(X).

Definition 2.4. A closed subset o7 of #(X) is called an admissible family if, whenever
Ae.o/ and xe X, we have Au{x}e.o.

Clearly, the most common admissible families are Z(X) and #(X). Of course,
one can construct some other admissible families. For example, let % be a subset of
#(X). The admissible family spanned by %, denoted span,.%, is given by

spang ¥ = {Bu{xy,...,x,}: Be¥, n=1, x;eX, i=1,...,n}.

In the rest of this paper, G will be a fixed nonempty closed subset of X. Hence we
write, for convenience, Ar = Apg and up = upg (provided G is also bounded).

3. Existence

Definition 3.1. A Banach space X is said to be (sequentially) Kadec if, for each
sequence {x,}<=X which converges weakly to x with lim,, , ||x,|| = ||x||, we have
lim, -, oo ||x, — x|| = 0.

Definition 3.2. A Banach space X is said to be strongly convex if it is reflexive, Kadec
and strictly convex.

The following results from [6,16] play a key role in the following.
Proposition 3.1. Suppose that X is a strictly convex and Kadec Banach space. Let G be

a nonempty closed, relatively boundedly weakly compact (resp. bounded relatively
weakly compact) subset of X. Then the set of all points xe X such that the minimization
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problem min(x, G) (resp. maximization problem max(x, G)) is well-posed is a dense
Gs-subset of X\G (resp. X).

3.1. The minimization problem

Let N={1,2,---} and ke N. We use the notations:

® Bs(X) ={A4eB(X): 14>0}, where the closure is taken in the metric space
(#B(X),H).

® ¥ ={FeBg(X): inf,-qdiam Lg(F,0) <; and inf, ¢ diam Lz(G, 0) <7}

e E°(G) = {Fes</ : the minimization problem min(F, G) is well-posed}.

In particular, we write E°(G) for E% (G) when o/ = #(X). Repeating the proof of
Lemma 3.2 of [5], we have

Lemma 3.1. Let ke N. Then %y is open in Bs(X).
Now we are ready to state the first main result of this section.

Theorem 3.1. Suppose that X is a strictly convex and Kadec Banach space. Let G be a
nonempty closed, relatively boundedly weakly compact subset of X and </ = B(X) an
admissible family of B(X). Then E%(G) is a dense Gs-subset of /.

Proof. By Proposition 2.2 and Lemma 3.1, we see that

E%(G) = (%)
keN
is a Gj-subset of /. Thus to complete the proof it suffices to show that E%(G) is
dense in .o/. Towards this end, we take an arbitrary Fe.o/ and with no loss of
generality, we may assume Ap>0. For any 0<r<%)~F, take XeF such that
d(%, G)<Ap +r/4. By Proposition 3.1, we have an X X such that ||X — X||<r/4 and

the minimization problem min(X, G) is well-posed; hence there is ge G such that
1% — gl = d(%, G). Set

r N r N
U= (1— - ~)x—&— —4
|| — 4l || — 4|

and
Y = Fu{u}.
Then we have that ||u — X|| = r. Since
¥ =gl =d(¥, 6)>d(X, G) - [|X - X[| > 4r

—||¥ = X[|>Ar = > =[|X —u]], (3.1)
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the minimization problem min(u, G) is also well-posed and g is the unique best
approximation to u from G. We estimate

5r
H(F,Y) = d(u, F)<|lu = X[[<[u = 2| + ||¥ = 5| <7~

We next show that Y e E%,(G). Indeed, by (3.1), we obtain
[l =gl = 1% = gl| = [|% — ul]
<|IF-X|[+d(x,G) —r
<r/d+p+r/d—r
=Air—1/2.
It follows that
Ly <|lu—gll|<ir —1/2.

Let now {(yu,¢n)}, with y,€Y and g,eG, be a minimizing sequence (i..
limn'lyl’l - gnH = ;»Y). Then,

lim sup d(y,, G) < lim ||y, — gul| = Ay <Ar —r/2.
n n

This implies that there exists some positive integer N, such that y,¢ F and hence
vn = u for all n>=N;. Then we have

lim|[g, — ul| = Ly <d(u, G).

This shows that {g,} is a minimizing sequence for min(u, G). Now since min(u, G) is
well-posed, it follows that (g,) converges strongly to §. It is clear that (u, §) is the
unique solution of the problem min(Y,G). So min(Y,G) is well-posed; that is,
YeE%(G). O

From Theorem 3.1 we immediately have the following corollaries.

Corollary 3.1. Suppose that X is a strictly convex and Kadec Banach space. Let G be a
nonempty closed, relatively boundedly weakly compact subset of X. Then E°(G) is a
dense Gs-subset of Bs(X).

Corollary 3.2. Suppose that X is a strictly convex and Kadec Banach space. Let G be a
nonempty closed, relatively boundedly weakly compact subset of X. Then
E°(G)n A (X) is a dense Gs-subset of H g(X).

Corollary 3.3. Suppose that X is a strongly convex Banach space and G is a nonempty
closed subset of X. Let o/ = B;(X) be an admissible family of B(X). Then E°,(G) is a
dense Gs-subset of </ .
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3.2. The maximization problem

Let N ={1,2,---} and ke N. We use the notations:

o My ={Fe#(X): inf,.¢diam Mg(F,0)<#} and inf, o diam My (G, o) <}}.
® EY(G) = {F e/ : the maximization problem max(F, G) is well-posed}.

In particular, we write E,(G) for E(G) when o/ = %(X). Repeating the proof of
Lemma 3.2 of [5], we have

Lemma 3.2. Let ke N. Then .# is open in B(X).
The second main result can be stated as follows.

Theorem 3.2. Suppose that X is a strictly convex and Kadec Banach space. Let G be a
nonempty closed, relatively weakly compact, and bounded subset of X and </ be an
admissible family of #(X). Then EZ(G) is a dense Gs-subset of </ .

Proof. Let Fe.o/ be arbitrary. Obviously we may assume that up>0. For any
0<r<pp, take xeF such that e(%, G)>pup — r/4. By Proposition 3.1, there exists

XeX such that ||¥x — X||<r/4 and the maximization problem max (%, G) is well-
posed. Let je G with |[X — || = e(X, G) and set

r . r N
U= <1+ — ~>x— —— g
|| — 4l || — 4|

Y = Fu{u}.

and

Then we have |lu — X|| = r. Furthermore, the maximization problem max(u, G) is
also well-posed and g is the unique furthest point to u from G. We estimate

H(F,Y)=du,F)<|lu— X||<[|u—X|| + ||X — X|]|<5r/4.
We next show that Y e.#). Since
| =gl =r+ 1% -4l
> r— |5 - & + ¢(%,G)
>r—r/d+up—r/4
=up+r/2,
it follows that
py =|lu— gl >pp +r/2.
Let {(ys,9n)} With y,€Y and g, € G be a maximizing sequence. Then,
lim inf e(y,, G) = lim ||y, — gull = sy > pp +r/2.
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This implies that there exists some positive integer N; such that y, ¢ F and so y, = u
for all n> N,. Hence,

lim||g, — u|| = Ay =e(u, G)

and {g,} is a minimizing sequence for max(u, G). But the problem max(u, G) is
well-posed, we conclude that (g,) strongly converges to §. It is evident that (u, §) is
the unique solution of the problem max(Y, G) and so max(Y, G) is well-posed. That
is, YeEZ(G). The proof is complete. [

The following three corollaries are now direct consequences of Theorem 3.2.

Corollary 3.4. Suppose that X is a strictly convex and Kadec Banach space. Let G be a
nonempty closed, relatively weakly compact, and bounded subset of X. Then E,(G) is a
dense Gs-subset of B(X).

Corollary 3.5. Suppose that X is a strictly convex and Kadec Banach space. Let G be a
nonempty closed, relatively weakly compact, and bounded subset of X. Then
E,(G)n A (X) is a dense Gs-subset of H# (X).

Corollary 3.6. Suppose that X is a strongly convex Banach space and G is a nonempty
closed bounded subset of X. Let </ be an admissible family of B(X). Then EZ(G) is a
dense Gs-subset of </ .

4. Porosity

The following definition is taken from De Blasi et al. [4].
Definition 4.1. A subset Y in a metric space (E,d) is said to be porous in E if there
are 0<r<1 and ry>0 such that for every xe E and re(0,ry] there is a point ye E
such that B;(y, tr) = By(x,r)n(E\Y). A subset Y is said to be o-porous in E if it is a
countable union of sets which are porous in E.

Note that in this definition the statement “‘for every xe€ E” can be replaced by “for
every xe Y. Clearly, a set which is g-porous in E is also meager in E; the converse
is, in general, false.

4.1. Minimization problems

For FeE°(G), let (fr,gr) denote the unique solution to the problem min(F, G).
Set

F, =Fu{(l —a)fr +agr}, 0<a<l.



C. Li, H-K. Xu | Journal of Approximation Theory 125 (2003) 10-25 19
Lemma4.1. Let N = {1,2, ...} be the set of positive integers. Define a set 7 in B(X)
by
QZ m U U B.ﬂ(;(X)(Fotapr(l/k))a

keN FeE°(G) 0<a<l1/2

where py. (¢) = min{H(F, F,), 1}¢. If X is uniformly convex, then < E°(G).

Proof. It suffices to show that for every F e %,
lim diam Lg(F,0) =0 and lim diam Lg(G,0) = 0.

00+ 0—0+
Indeed, as F e, for each ke N, there exist FXe E°(G) and 0<oy <1/2 such that
H(F. FL)<pps (1/k).

This implies that H(F, Fy )—>0 as k— + co. It follows that

ro = sup diamek < + 0.
keN

We write for convenience,
O = prk(l/k>7uk = (1 — ak)fF/c + dpgpr, Tk = Apk.
Then it is not hard to see that

)uka = (1 — O(k)}"k,

d(ur, F*) = || fre — ui]| = auer,
Sk = min{H(F*, F} ), 1} /k<oyri/k.
We may also assume, with no loss of generality, that o >0 for all k.
Claim 1. diam Lr(G, dx) <40y for all k>4.
To prove Claim I we first show
LFZ‘\k (G, 45]() = {uk} Vk>4.
To see this, we assumefeLFlkk(G7 40y) and k>4. Since
d(f,G)<(1 — o )ri + 40k <ri — (1 — 4/k)ouric < Apr,

we obtain that f ¢ F* and hence f = w for Ff = FFO{u}.
Now for any feLp(G,0), since H(F,Fs )<, there exists feF} such that
|| f — fl|<25;. We have

d(f OIS =Nl +d(f,G)<r + 30k <ps+ 40y,
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using the fact that |2 — Ap |<0. It follows that fe Ly (G,40;) and so f = u; when
k>4. Thus, for any fi,f>€ Lr(G,d;), we have that
1A =Ll — uel| + [Jue — fo]| <40k k>4,

This proves the claim.
Claim II. Lg(F, k) S D( frr, uk, ric,4/k) for all k> 4.

To prove Claim II we first show
Lg(Fy ,30k) S D(fpe,ui,ric, 4/k)  Vk>4.
In fact, for any ge Lg(Fy ,35;), we have that
d(g,ka)sszA}( + 30, = (1 — o)y + 30%.
Take f*eF} such that
llg =41 < (1= oge)ric + 40y
Hence for k>4,
d(f*,G)<|lg — A< (1 — oy )i + 40k <rie — (1 — 4/k)oyeric < g
This implies that f* = u; and
g — wel| < (1 = oy )rx + 40
< (1 — o )rg + 4/ koyry
=re = |[fpe —u||(1 = 4/k).
It follows that
Le(Fy30k) S D( S, e, 1ie, 4/K).
On the other hand, since
Lg(F,0r) = Lg(Fy , 35),
we have
LG(F,0r) = D(fre,up, 1, 4/k) Vk>4.

This ends the proof of Claim II.
Combining Claims I, IT and Proposition 2.3, we have

lim diam Lg(F,5¢) =0

k—+o0
and
lim diam Lr(G,d;) = 0.

k—+o0

Hence by Proposition 2.2 F e E°(G) and the proof is complete. [
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Theorem 4.1. Let X be a uniformly convex Banach space and o/ = Bc(X) be an
admissible family of B(X). Then the set </\E°(G) is o-porous in </ .

Proof. Let
%k:%\ U U B,v/(fovai(l/k))v

FeE’(G) 0<a<1/2

By = {Fe%’k : 1/l<)vp<l}.
By Lemma 4.1, we have

AE(G e\ B =] | Zu-
keN leN

To complete the proof it suffices to show that the set %y, is porous in .«/ for every
k,leN.

Let k,/e N be arbitrary. Define ro = 1/(2/) and o = 1/(4k). By Theorem 3.1, for
any Fe%y and 0<r<r, there exists Fe E°,(G) such that

_ 1
H(F7F)<£ and 7</1p<l.
Set ity = (f#+ gF)/2. Then
H(F\5, F)= H(F\), F) — H(F, F)

> sup d(f,F) /4
feF ),

> d(ity ), F) —1/4
=(1/2)2p —r/4=3r/4.
It follows that there exists 0<7<1/2 such that H(F;, F) = 3r/4. Since for each
AeB.,(F, ar)
H(A,F)<H(A,F,)+ H(F, F)<or+3r/4<r,
we have that
B (F,,or)= B, (F,r).
In order to show that
B/ (F, or) S of\ By,
it suffices to show that
B/ (Fy,or)= By (Fy, pf,(1/k)).
Indeed, from the definition of «, it follows that ar<1/k. Furthermore, since
H(F,,F)>H(F,,F) — H(F,F)>r/2,
we have

ar<2o0H(F,, F)<H(F, F)/k,
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so that
ar<p F (1 / k) .
This completes the proof. [

Corollary 4.1. Let X be a uniformly convex Banach space. Then the set B¢(X)\E°(G)
is a-porous in Bg(X).

Corollary 4.2. Let X be a uniformly convex Banach space. Then the set # (X )\E°(G)
is a-porous in A ¢(X).

4.2. Maximization problems

Given Fe E,(G), let ( fr,gr) be the unique solution to the problem max(F, G). Set
F, = Fu{(l +o)fr —ogr}, 0<a<l

We also set

=N U U BaEeni/i).

keN FeE,(G) 0<a<l1/2
Lemma 4.2. If X a is uniformly convex Banach space, then < E,(G).

Proof. It suffices to show that, for every Fe %,

lim diam Mg(F,0) =0 and lim diam Mp(G,Jd) =0.
6—0+ 0—0+

Let Fe% be arbitrary. Then for each ke N there exist FX € %, and 0 <oy <% such that
H(F,F})<p, (1/k).

So

o = sup diamek< + 0.
keN

As in the proof of Lemma 4.1, we write
O = 0 (1K), = (1 ol —axgpn, e = s
and assume that oy >0 for all k. Then we have
Or <oyri/k, Bpe = (1 + o)
and
d(“kaFk) = || fpx — ukl| = oy
Let 7 = ri + oyri(1 — 4/k). We will prove that
MG(F,6k) = Mg (Fy ,30k) S D(uk, fre, Fr, 4/k)  Vk>4 (4.1)
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and
Mka(G, 46,) = {ur} Vk>4. (4.2)
Firstly, for any ge Mg(F},30;), we have that
e(yg, Fi‘;{) > ipt — 30k = (1 + o )rie — 30r.
Take f* e F} such that
llg =/ 1= (1 + o)y — 4%
so that for k>4,
e(f*, ) =lg —f¥|= (1 + o) — 405 >ri + (1 — 4/k)orye > ppoe.
This implies that /% = u;. Hence we have that
g — uil|= (1 4 o )ric — 4
= (14 oy )ry + doyry/r
=Tk.
Clearly, ||g — fp||<rk = Fx — ||ux — fp]|(1 — 4/k). This shows that
Mq(Fy,, 36x) S D(u, frr, Fi, 4/k)
since geM(;(ka, 30y) is arbitrary. Noting that, for H(F,ka)<5k,
MG(F,6c) = Mg(Fy , 35),
we have
Mq(F,0r) = D(uk, fre, T, 4/k);
hence (4.1) holds. Secondly, for anyfeMFik,c (G,46,), we have
e(f, G)Z,uka — 40, = (1 + o )rk — 4ok =ri + (1 — 4/k)agry > ry.

This implies that f¢F¥ so that (4.2) holds. Next we will show that FeE,(G).
Indeed, for any fe Mp(G,0;), since H(F,F) )<y, there exists fe Fi such that
||f — f]| <28;. Thus, we have that

(G2 e£.G) ~ |1 ~ 1| — 360> upy — 46,
which implies fe M r: (G, 40c), which, by (4.2), in turn implies that f = ux. Hence, for
any two elements f, /> € Mp(G, 0r),

1At = A< = wel| + [Juxe — f2][ <46k
Therefore,

diam MF(G7 5k) <46y
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and
lim diam Mg(G,0) = 0.

k—+o0
By Proposition 2.4 and (4.1), we conclude that

lim diam Mg(F,0,) = 0.
k—+o

This together with Proposition 2.2 indicates that FeFE,(G) and the proof is
complete. [

Theorem 4.2. Let X be a uniformly convex Banach space and </ an admissible family
of B(X). Then the set o/\E,(G) is o-porous in </ .

Proof. Let
By = oA\ U U Bg/(Fmpr(l/k))v

FeE,(G) 0<a<1)2

B = {FG.@k : 1/l<,uF<l}.
Then, by Lemma 4.1, we have

A\E(G)ce/\B =] | Bu-
keN leN
By arguments similar to those used in the proof of Theorem 4.1, we can show that
the set %y, is porous in o7 for every k,/e N, and the proof is thus complete. [I

Corollary 4.3. Let X be a uniformly convex Banach space. Then the set Z(X)\E,(G) is
a-porous in B(X).

Corollary 4.4. Let X be a uniformly convex Banach space. Then the set A (X)\E,(G)
is a-porous in A (X).

5. Conclusions

We have established some results on generic property and porosity of well-
posedness of mutually nearest and mutually furthest points for any admissible family
of bounded subsets in Banach space. In particular, for a nonempty closed subset G of
X, we obtained the following two results: one is this: if X is strongly convex, then
E°(G) and E°(G)nA(G) (resp. E,(G) and E,(G)nA(G)) are dense Gs-sets
in B6(X) and A '¢(X) (resp. #(X) and #'(X)), respectively; the other shows
that B¢(X)\E°(G) and A ¢(X)\E°(G) (resp. B(X)\E,(G) and A (X)\E,(G)) are
o-porous in #Bg(X) and # ¢(X) (resp. B(X) and #°(X)), respectively, provided that
X is uniformly convex. Recall that the first result was showed to be true for #'5(X)
(resp. # €(X)) by Li [12] but for %’g(X) (resp. (X)) by De Blasi et al. [5] under
the stronger assumption that X is uniformly convex. Here %4 (X) stands for the
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subset of Z(X) consisting of all convex subsets of X and #S(X), # €(X), #§(X)
are defined similarly. However, the o-porosity of the minimization problem
min(4, G) (resp. maximization problem max(4,G)) has not been explored for
Ae A E(X) (resp. Ae #C(X)) or Ae BE(X) (resp. Ae B (X)) before. Thus, we are
motivated to consider the following two problems.

Problem 5.1. Is the set E°(G)n#S(X) (resp. E,(G)n#°(X)) a dense Gs-sets in
%’S(X ) (resp. A€ (X)) if X is just a strongly convex Banach space?

Problem 5.2. Are the sets % (X)\E°(G) and # & (X)\E°(G) (resp. B (X )\E,(G) and
A C(X)\E,(G)) are g-porous in BE(X) and #E(X) (resp. Z°(X) and 4 €(X)),
respectively, if X is uniformly convex?

Surprisingly, the techniques developed in this paper or other papers such as [5,12]
do not work for the above two problems and hence we leave them open.

References

[1] G. Beer, R. Lucchetti, Convex optimization and the epi-distance topology, Trans. Amer. Math. Soc.
327 (1991) 795-813.
[2] F.S. De Blasi, J. Myjak, On a generalized best approximation problem, J. Approx. Theory 94 (1998)
54-72.
[3] F.S. De Blasi, J. Myjak, P.L. Papini, Starshaped sets and best approximation, Arch. Math. 56 (1991)
41-48.
[4] E.S. De Blasi, J. Myjak, P.L. Papini, Porous sets in best approximation theory, J. London Math. Soc.
44 (1991) 135-142.
[5] F.S. De Blasi, J. Myjak, P.L. Papini, On mutually nearest and mutually furthest points of sets in
Banach spaces, J. Approx. Theory 70 (1992) 142-155.
[6] J.M. Borwein, S. Fitzpatrick, Existence of nearest points in Banach spaces, Canad. J. Math. 41 (1989)
702-720.
[71 A. Dontchev, Z. Zolezzi, in: Well Posed Optimization Problems, Lecture Notes in Mathamatics,
Vol. 1543, Springer, Berlin, 1993.
[8] P.G. Georgiev, The strong Ekeland variational principle, the strong drop theorem and applications,
J. Math. Anal. Appl. 131 (1988) 1-21.
[9] S.V. Konjagin, On approximation properties of closed sets in Banach spaces and characterization of
strongly convex spaces, Soviet Math. Dokl. 21 (1980) 418-422.
[10] K.S. Lau, Almost Chebyshev subsets in reflexive Banach spaces, Indiana Univ. Math. J. 27 (1978)
791-795.
[11] C. Li, Almost K-Chebyshev sets, Acta. Math. Sinica 33 (1990) 251-259 (in Chinese).
[12] C. Li, On mutually nearest and mutually furthest points in reflexive Banach spaces, J. Approx.
Theory 103 (2000) 1-117.
[13] C. Li, On well posed generalized approximation problems, J. Approx. Theory 107 (2000) 96-108.
[14] C. Li, On well posedness of best simultaneous approximation problems in Banach spaces, Sci. China
Ser. A 44 (2001) 1558-1570.
[15] C. Li, X.H. Wang, Almost Chebyshev set with respect to bounded subsets, Sci. China 40 (1997) 375-383.
[16] R.X. Ni, C. Li, Well posedness of furthest point and simultaneously furthest point problems in
Banach spaces, Acta Math. Sinica 43 (2000) 421-426 (in Chinese).
[17] S.B. Steckin, Approximation properties of sets in normed linear spaces, Rev. Roumaine Math. Pures
Appl. 8 (1963) 5-18.



	Porosity of mutually nearest and mutually furthest points in Banach spaces
	Introduction
	Preliminaries
	References


